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Simple Summary: Giraffe numbers have been plummeting over the last 30 years by 30–40%. As such,
efforts to manage in situ and ex situ populations are increasing. Assisted reproduction techniques such
as sperm cryopreservation can help preserve the genetic diversity of giraffe subspecies or enhance
genetic exchange between populations. However, to date, the post-thaw motility of recovered
sperm has been variable. In this study, spermatozoa were collected from the epididymides of seven
giraffes to investigate whether an alternative cryoprotectant could improve sperm motility following
conventional cryopreservation. For this, we compared the motility and viability of sperm prior to
and after freezing in three different extenders: a commercial equine extender (BotuCrio®; Nidacon,
Moedal, Schweden), a commercial bovine extender (Steridyl, Minitube, Tiefenbach, Germany), and an
in-house “made” bovine egg yolk extender (TEY). Each was further supplemented with either glycerol
or a mix of glycerol and methylformamide cryoprotectants. The results show that spermatozoa frozen
with a mix of two cryoprotectants had significantly higher post-thaw motility compared to glycerol
alone. Specifically, spermatozoa frozen in TEY and a mix of cryoprotectants achieved post-thaw
sperm motility of 57 ± 3%. These results might serve as a blueprint for an improved protocol for
giraffe sperm cryopreservation.

Abstract: Giraffe numbers have plummeted over the last 30 years by 30–40%. Thus, their conservation
status has been raised from least concern to vulnerable. Efforts to manage in situ and ex situ popula-
tions are increasing. Assisted reproduction techniques (ART) such as sperm cryopreservation could
help preserve the genetic diversity of giraffe subspecies and, when used for artificial inseminations,
enhance genetic exchange between isolated populations. However, to date, the post-thaw motility of
recovered sperm has been low and inconsistent. In this study, epididymal sperm collected from the
testes of giraffes (n = 7) was frozen in three different extenders, namely, BotuCrio, Steridyl, and test
egg yolk (TEY), each supplemented with one of two different cryoprotectants (5% glycerol or a mix
of 1% glycerol and 4% methylformamide) and frozen over liquid nitrogen vapor. Across all three
extenders, sperm showed significantly better post-thaw results when frozen with a mix of glycerol
and methylformamide compared with glycerol alone. Sperm frozen with TEY and a mix of glycerol
and methylformamide achieved superior post-thaw total and progressive sperm motility of 57 ± 3%
and 45 ± 3%, respectively. These results show the benefit of using alternative cryoprotectants for
freezing giraffe spermatozoa and could aid in the application of ARTs for giraffe subspecies or the
closely related endangered Okapi.
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1. Introduction

In 1758, over 260 years ago, Linné first described the giraffe as one of Africa’s most
charismatic species. Since then, its range has dramatically reduced due to habitat loss,
habitat fragmentation, and increased human population growth. While giraffes are truly
majestic creatures, they are, at the same time, an easy and rewarding target as a food source,
and their skin and tail hair are popular as traditional gifts and tools. In regions of civil
unrest, these features turn to their disadvantage as populations are increasingly under
threat by illegal hunting [1]. It is due to these circumstances that giraffes are extinct in many
parts of their former range and that the estimated number of giraffes in the wild (97,500)
has declined by 30–40% over three generations. As such, the conservation status of giraffes
is currently considered as a single species by the International Union of Conservation of
Nature (IUCN) and has recently been raised from least concern to vulnerable [1].

Over the past 20 years, new genetic, morphometric, and phylogenetic research has
repeatedly challenged the current giraffe taxonomy and the subdivision of the giraffe
species into nine subspecies [2]. Suggestions were made to distinguish between two, six,
eight, or, most recently, three or four distinct giraffe species [2–6]. Thus, ongoing scientific
dispute on giraffe taxonomy somewhat hinders in situ or ex situ genetic management of
isolated or small populations of giraffe subspecies. Assisted reproduction techniques (ARTs)
such as sperm cryopreservation and artificial insemination [7] could help preserve the
genetic diversity of smaller giraffe subspecies populations: for example, between captive
populations of the Kordofan or the critically endangered Nubian subspecies.

To date, data on giraffe sperm cryopreservation are scarce. A total of just five stud-
ies have reported the freezing of epididymal or ejaculated sperm using either bovine
GENT extenders (Minitube; Tiefenbach, Germany) in combination with dimethylsulfoxide
(DMSO) [8] or TRIS-based egg yolk extenders supplemented with 4–6% glycerol [9–12]
using either conventional, freeze drying, or ultra-rapid freezing methods. From these five
case studies, only two reported motile sperm of <5% and 44% post-thaw (Table 1) [8,9].

Table 1. Overview of giraffe sperm cryopreservation studies and post-thaw results.

Reference Giraffe (n) Type of
Sperm

Freezing
Method Freezing Extender Cryoprotectant Post-Thaw

Motility

Maya Soriano, 2012 1 epididymal conventional Gent A/B DMSO 1%/5%/10% <5%
Kaneko, 2014 1 Ejaculated freeze drying Tris-EDTA buffer None 0
Lueders, 2015 1 Ejaculated conventional BIOXcell/Triladyl Glycerol 4%/6% not reported

Sipek, 2019 1 epididymal conventional Tris-fructose-citric + 20%EY Glycerol 6% 44 %
O’Brien, 2019 2 epididymal conventional Tris-citric-glucose + 6%EY Glycerol 5% not reported

ultra-rapid Tris-citric-glucose + 6%EY 100 mM sucrose not reported

EY: egg yolk.

While both are vital studies in terms of setting an impressive benchmark for giraffe
sperm cryoresistance, it is imperative that more samples are collected to reduce the vari-
ability between results and further investigate alternative cryoprotectants to improve the
success of conventional freezing methods. For this, conventional freezing is by far the most
straightforward method of freezing when considering the smaller amount of equipment
required and widespread adoption in artificial breeding.

The successful cryopreservation of spermatozoa collected from wildlife species is vital
for ARTs, in particular the establishment of biobanks to preserve genetic diversity across
species [13]. Yet, depending on the intended application of frozen-thawed sperm, the
minimal requirements for motility and viability post-thaw can differ greatly, depending
on whether the sperm will be used for artificial insemination (AI), in vitro fertilization
(IVF), or intracytoplasmatic sperm injection (ICSI). Frozen-thawed sperm for ICSI embryo
production needs to be viable but not necessarily motile [11,13]. However, the critical pa-
rameter for success in the artificial insemination of a cycling female giraffe is superior sperm
motility post-thaw [14]. In order to ensure that cryopreserved giraffe sperm might serve
simple and advanced applications in ART, it is critical to develop freezing methods that
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provide both high motility and viability. There are several factors which could contribute
to poor sperm quality prior to freezing, including poor animal health prior to euthanasia,
time until epididymis retrieval post-mortem, and subsequent collection of spermatozoa or
even collection of ejaculate from a stable floor [8–10,13]. However, as seen in other studies,
the extender and cryoprotectant used can also have a significant impact on the quality of
sperm during the freezing process. Given the giraffe’s closest domestic species are bovines,
we decided to test two bovine extenders. Steridyl is a commercially available TRIS-based
bovine extender (Minitube, Germany), similar to the test egg yolk (TEY) diluent which is
made in house and contains 15% egg yolk. They are both used successfully in the bovine
industry. Botucrio® is traditionally an equine extender (Minitube, Germany), although it
has had recent success preserving rhinoceros and African elephant spermatozoa [15]. Given
various different concentrations of well-known cryoprotectants, glycerol, and DMSO have
already been trialed in giraffe spermatozoa, it was decided to compare the effect of glycerol
against a combination of glycerol and methylformamide. Methylformamide is commonly
used in stallion and rhinoceros sperm cryopreservation. It is known to be more fluid than
glycerol, and this aids its incorporation into the cell membrane more efficiently [15–18]. A
reduction in the glycerol concentration and use of methylformamide have also previously
achieved better post-thaw results in canine, stallion, and rhinoceros sperm compared to
glycerol [15,19,20].

The current study took advantage of planned castrations in hybrid giraffe bulls in
captive environments [21] to determine the most suitable extender and cryoprotectant for
preserving sperm motility and viability post-thaw. Epididymal sperm was extracted on site
immediately after castration to avoid any negative effects of the cooling and transportation
of testis material on sperm quality. It was hypothesized that a combination of glycerol
and methylformamide in a bovine extender would result in higher post-thaw motility,
hopefully improving conventional cryopreservation protocols for the giraffe species.

2. Materials and Methods
2.1. Animals

This study benefited from independently planned castrations or euthanasia of male
giraffes in four European Association of Zoos and Aquaria (EAZA) accredited zoos. Gi-
raffes were euthanized due to reasons unrelated to this study (n = 1/13 years) or castrated
(n = 6/6–8 years) as part of the European Endangered Species Program EEP long-term
goal to suspend captive management of hybrids in favor of keeping pure giraffe sub-
species only [8]. Testes from 7 adult giraffes were extracted under general anesthesia. The
anesthesia management and surgical technique were adjusted to the animal’s condition
and veterinarian’s resources: different protocols were used, mainly based on either al-
pha 2 agonist (detomidine, medetomidine) combined with ketamine or butorphanol, or
on highly potent opioids (etorphine, thiafentanil) [22–24]. The castration followed stan-
dard stallion surgery practice. The anesthesia and surgical technique differed based on
the veterinarians’ personal preference. To the best of our knowledge, the choice of anes-
thesia protocol or surgical technique did not impact the outcome of epididymal sperm
cryopreservation and was therefore a matter of personal preference of the anesthetist and
surgeon, respectively.

2.2. Sperm Preparation and Cryopreservation

After castration, spermatozoa were extracted from both epididymides and treated
identically in each of the 6 extender combinations. In brief, both cauda epididymides were
immediately dissected at room temperature (RT) after castration. Each cauda epididymis
was sectioned into three equal, vertical parts. To ensure that samples were not biased due to
different stages of sperm maturation, sections 1, 2, and 3 of the right cauda epididymis were
put into individual 37 ◦C, pre-warmed Petri dishes (Sarstedt, 51588 Nümbrecht Germany;
92 mm Ø; order number: 93.1646) with sections 3, 2, and 1 of the left epididymis. Epi-
didymal parts were then minced, and 5 mL of 37 ◦C, pre-warmed extender was added:
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(1) BotuCrio (Nidacon, 43137 Mölndal, Sweden); (2) Steridyl (Minitube, 84184 Tiefenbach,
Germany); and (3) test egg yolk (TEY) extender (TEY: TES 4.83 g; TRIS 1.16 g; fructose
200 mg per 100 mL of distilled water; 85 mL of the aqueous solution was mixed with 15 mL
egg yolk). The Petri dish was left on the warm plate at 37.0 ◦C for 15 min for spermato-
zoa to swim out of the minced epididymis into the semen extender. Aliquots from both
epididymides with the same extender were pooled, and the sperm concentration was esti-
mated using a Neubauer hemocytometer. The aliquots were diluted to a final concentration
of 150 × 106 sperm/mL. After the final dilution, sperm motility and morphology and
the functional integrity of the plasma membrane were assessed for each extender variant.
Two different cryoprotectants were tested for each extender variant. One variant yielded
a final working concentration of 5% glycerol, while the second cryoprotectant yielded a
final working concentration of 1% glycerol and 4% methylformamide. The aliquots were
equilibrated at RT for 10 min before they were filled in 0.5 mL straws using a micropipettor
for embryo handling and a manual ball sealer (Minitube, 84184 Tiefenbach, Germany;
Ref.: 19022/0002; Ref.: 13136/0100). Straws were cooled at 4 ◦C for 1 h and placed on a
floating rack and then into a stainless-steel container filled with liquid nitrogen (LN) for
freezing (Minitube, 84184 Tiefenbach, Germany; freezing unit for straws, Ref.: 15043/0636).
The straws on the floating rack remained in the LN vapor, 4 cm above the LN surface
for 10 min before being plunged into liquid nitrogen. The freezing rate at 4 cm above the
LN was determined in advance using a temperature logger (PCE-T390, PCE Deutschland
GmbH, 59872 Meschede, Germany) placed into a loaded 0.5 mL straw and then onto a
floating rack in the LN bath. At 4cm above the LN, the freezing rate from +4 ◦C to −6 ◦C
was −33 ◦C/min. The plateau phase lasted for 1:10 min:s. The freezing rate from −2 ◦C
to −15 ◦C was −26 ◦C/min, and from −15 ◦C to −100 ◦C, it was −20 ◦C/min. Manual
seeding was performed 60 s after freezing had started. Two straws per variant were thawed
and pooled in a 37.0 ◦C water bath for 60 s prior to assessment.

2.3. Sperm Quality Assessment

Total (percentage of progressive + stationary motile sperm) and progressive (the
percentage of spermatozoa which crossed at least two thirds of the field of view in a
virtually progressive manner at a 200-fold magnification) sperm motility was assessed in
all treatments after the initial dilution with the extender (no CP) and immediately after
thawing. Subjective motility evaluations were conducted on all samples by the same
experienced andrologist. For this, 7 µL aliquots of the thawed sample were placed on a pre-
warmed slide, with a pre-warmed cover slip (18 mm × 18 mm), and evaluated immediately
on a warm stage-equipped phase-contrast microscope using a 200 × magnification at 37 ◦C
(Olympus C41; Olympus, Germany).

For the assessment of acrosome integrity and sperm morphology, 10 µL aliquots from
the fresh diluted and frozen-thawed treatments were fixed in 40 µL Hancock’s fixative (2.9 g
Tri-Natriumcitrat-2-hydrat per 100 mL distilled water; to 96 mL of the aqueous solution,
4 mL of 37% formaldehyde was added, 1:25). An amount of 10 µL of the fixed aliquots
was placed on a slide with a cover slip and assessed with a phase-contrast microscope
at ×1000 magnification. Acrosomes were classified as intact versus modified or reacted
including completely detached acrosomes. Sperm morphology included a search for a
range of abnormalities such as pyriform heads, teratoid sperm, abnormal head–tail junction,
bent midpiece, broken neck, distal midpiece reflex, multiple tails, abaxial, bent, coiled or
broken tails, or detached heads. Epididymal spermatozoa with a distal cytoplasmic droplet
were judged as normal.

A hyperosmotic swelling (HOS) test evaluated the function of the sperm’s membranes
before and after freezing, serving as an indicator of the fertility potential of the sperma-
tozoa [25]. For this, 20 µL aliquots of each treatment were diluted in 100 µL of sodium
citrate-fructose solution (0.735 g of sodium citrate + 1.35 g fructose per 100 mL of distilled
water) adjusted with water to an osmolarity of 100 mOsm and incubated for 30 min at
37 ◦C. From each treatment, 10 µL aliquots were placed on a slide with a cover slip and
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evaluated with the phase-contrast microscope. Spermatozoa were categorized as either
HOS negative, i.e., cells with an unchanged tail and considered to be dead, or HOS positive,
i.e., swollen cells with curved swollen tails which were considered to be viable [25]. The
HOS scoring was corrected for the general occurrence of tail defects in the non-challenged
samples. For acrosome integrity, morphology, and the HOS test, a total of 100 spermatozoa
were evaluated.

The response to cryopreservation in each treatment was illustrated by calculating a
cryoresistance ratio (CR) [12] for sperm motility, progressive motility, acrosome integrity,
and membrane functional integrity:

CR = (value post-thaw/value pre-freeze) × 100

2.4. Statistical Analysis

Values for motility, membrane function, acrosome integrity, and normal sperm mor-
phology were averaged across male giraffes and are reported as the mean ± SEM. The
statistical significance of differences between each cryoprotectant per extender was calcu-
lated performing one-way repeated measures ANOVA with extender treatment allocated as
the independent variable. A Bonferroni post-test was used to adjust the probability values
if p < 0.05. Values of p < 0.05 were considered significant (GraphPad Instat, 3.0 San Diego,
CA 92108, USA).

3. Results

After sperm extraction from the epididymis, sperm diluted with the TEY extender
showed significantly higher pre-freeze total and progressive motility compared to the
commercial extenders BotuCrio (p < 0.001) and Steridyl (p < 0.05) (Table 2, Figure 1).

Table 2. Giraffe epididymal sperm characteristics (n = 7) pre-freeze without cryoprotectant assessed
subjectively at 37 ◦C. Data are pooled over n = 7 males ± SEM. Columns which differ in superscript
indicate significant differences between treatments (p < 0.05).

Freezing Extender BotuCrio Steridyl TEY

Total motility (%) 73.7 ± 4.4 a 79.4 ± 4.1 a 88.9 ± 2.4 b

Progressive motility (%) 73.7 ± 4.4 a 79.4 ± 4.1 a 88.9 ± 2.4 b

HOS positive (%) 91.0 ± 1.9 a 90.1 ± 1.5 a 94.4 ± 1.0 b

Acrosome intact (%) 94.9 ± 1.3 a 93.9 ± 1.4 a 96.6 ± 0.6 b

Normal morphology (%) 71.0 ± 1.8 a 80.9 ± 0.8 b 82.1 ± 2.4 b

In general, giraffe sperm was best preserved when frozen using the TEY extender
with a mix of glycerol and methylformamide. This variant achieved the highest post-thaw
total and progressive motility of 57% and 45%, respectively (Table 3), but was similar to
that recorded for spermatozoa frozen in Steridyl and supplemented with glycerol and
methylformamide, the commercial bovine extender (Table 3). In contrast, BotuCrio, an
extender used in stallions, seemed the least suitable for the cryopreservation of giraffe
sperm. Samples frozen with BotuCrio showed significantly lower post-thaw total and
progressive motility compared with samples frozen with Steridyl or TEY regardless of the
cryoprotectant used (p < 0.01).

Both commercial extenders, BotuCrio and Steridyl, showed significantly higher post-
thaw total (p < 0.0015, p < 0.017) and progressive motility (p < 0.04, p < 0.013) when sperm
was frozen with the mix of 1% glycerol and 4% methylformamide compared with samples
frozen with 5% glycerol. Sperm frozen in the TEY extender also showed a tendency for
higher post-thaw motility when frozen with the mix of cryoprotectants. Yet, this difference
was not quite significant (p = 0.06; Table 3).
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Figure 1. Open castration in a giraffe: (a) Opened processus vaginalis and protruding testis before
surgical removal. (b) Giraffe testis, epididymis, and duct deferens. (c) Dissected cauda epididymis
and ductus deferens.

Table 3. Giraffe epididymal sperm characteristics (n = 7) post-thaw using glycerol and a mix of
glycerol and methylformamide as cryoprotectants. Gly: 5% glycerol; Gly + MF: 1% glycerol + 4%
methylformamide. Data are pooled over n = 7 males ± SEM. Columns which differ in superscript
indicate significant differences between treatments (p < 0.05).

Freezing Extender BotuCrio Steridyl Test Egg Yolk
Cryoprotectant Gly Gly + MF Gly Gly + MF Gly Gly + MF

Total motility (%) 7.0 ± 1.9 a 29.6 ± 4.1 b 29.7 ± 5.6 b 52.6 ± 4.2 c 49.0 ± 6.0 c 57.3 ± 3.0 c

Progressive motility (%) 1.1 ± 0.7 a 13.7 ± 5.6 b 17.6 ± 6.1b 40.7 ± 5.1 c 34.9 ± 6.6 c 45.0 ± 3.3 c

HOS positive (%) 76.3 ± 3.8 a 86.7 ± 1.5 b 75.7 ± 2.9 a 79.0 ± 2.9 a 84.1 ± 2.1 a 82.7 ± 2.0 a

Acrosome intact (%) 86.6 ± 1.2 87.3 ± 1.4 81.9 ± 3.2 82.6 ± 4.7 82.3 ± 4.6 84.4 ± 3.9
Normal morphology (%) 48.6 ± 6.1 45.4 ± 7.9 38.4 ± 5.5 34.4 ± 5.4 37.9 ± 6.8 38.3 ± 7.0

The functional integrity of the plasma membrane was significantly decreased after
thawing in all extender treatments (p ≤ 0.03). Yet, post-thaw sperm membrane function
did not differ significantly between cryoprotectants, except for semen cryopreserved in
BuotoCrio with the mix of glycerol and methylformamide (p < 0.03).

There was a substantial decline in the normal morphology after freezing and thawing
in all extender variants, especially for samples preserved in Steridyl or TEY (Tables 2–4). The
decline was higher than the decline seen in HOS-positive sperm or total motility. Yet, sperm
morphology and acrosome integrity prior to freezing and post-thaw did not show a signifi-
cant difference between any of the extenders or cryoprotectants tested (Tables 2 and 3).

Table 4. Calculated cryoresistance ratio for giraffe sperm motility, progressive motility, membrane
function, acrosome, and morphology. Data are pooled over n = 7 males ± SEM. Columns which differ
in superscript indicate significant differences between treatments (p < 0.05).

Freezing Extender BotuCrio Steridyl Test Egg Yolk
Cryoresistance Rate Gly Gly + MF Gly Gly + MF Gly Gly + MF

Total motility 9.2 ± 2.4 a 40.1 ± 5.0 b 37.4 ± 7.0 b 67.5 ± 6.8 c 55.5 ± 7.0 c 64.7 ± 3.8 c

Progressive motility 1.5 ± 1.0 a 17.5 ± 6.1 b 21.8 ± 7.6 b 54.4 ± 7.5 c 39.5 ± 7.8 c 50.8 ± 3.9 c

HOS positive 83.9 ± 4.0 95.4 ± 1.4 84.1 ± 3.4 87.7 ± 3.1 89.3 ± 2.9 87.8 ± 2.8
Acrosome intact 91.5 ± 2.5 92.3 ± 2.6 87.5 ± 4.1 88.4 ± 5.6 85.3 ± 4.9 87.6 ± 4.4

Morphology 68.4 ± 8.3 64.1. ± 10.9 47.7 ± 7.1 42.7 ± 6.9 45.7 ± 8.0 45.8 ± 8.1
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Cryoresistance ratios of sperm motility and progressive motility showed significant
differences according to the extender and cryoprotectant used. Yet, the cryoresistance ratios
of sperm membrane function and acrosome integrity of ≥84 and 85, respectively, were very
high across all treatments (Table 4).

4. Discussion

The results presented in this study demonstrate the benefits of using different cry-
oprotectants and conventional cryopreservation methods on the post-thaw motility of
giraffe spermatozoa. Here, the comparison of frozen-thawed spermatozoa from seven
bulls showed that using a commercial or custom-made bovine extender supplemented
with a 1% glycerol and 4% methylformamide cryoprotectant resulted in the highest post-
thaw motility of 53 ± 4% and 57 ± 3%, respectively. The custom-made bovine extender
with a glycerol-alone cryoprotectant also recorded the highest progressive motility com-
pared to the equine extender cryoprotectant variants. Interestingly, the equine extender
ButoCrio supplemented with the glycerol and methylformamide cryoprotectant combina-
tion recorded the highest viability. These results signify the importance of glycerol and
methylformamide as a cryoprotectant, helping to improve the survival of giraffe sper-
matozoa. Improved post-thaw motilities offer new opportunities for utilizing ARTs in
giraffe species [7–10,12,22,26,27] and hold promise for preserving the genetics of pure-bred
endangered giraffe species or the closely related Okapi.

This is the first study to report a post-thaw motility of over 44% for giraffe sperm.
Indeed, of the previous studies which have investigated the cryosurvival of giraffe sperma-
tozoa, these results comprehensively assess the impact of conventional cryopreservation
protocols both before and after freezing on a number of sperm parameters. Of the papers
that have reported motile spermatozoa post-thaw, our results recorded a 13% increase in
motility than previously recorded [9]. Although there was no effect of treatment on the
acrosome integrity of giraffe spermatozoa, the high results reported when pooled across
bulls and treatments (84.2 ± 3.17) act as a benchmark for this species for future cryop-
reservation studies. When the cryoresistance ratios (CR) for sperm acrosome integrity and
viability are also considered, these results add further evidence of the high resilience of
giraffe epididymal spermatozoa to cryopreservation. Even treatments which recorded low
post-thaw motility showed CRs of epididymal sperm membrane functional integrity and
acrosome integrity of >84% and >85%, respectively. This suggests that epididymal giraffe
sperm are robust and remain mostly viable after conventional cryopreservation, particu-
larly when frozen with a combination of glycerol and methylformamide. Our findings are
in line with case reports on ejaculated, immotile, freeze-dried giraffe sperm fertilizing mice
oocytes via ICSI and on epididymal giraffe sperm which remained viable after ultra-rapid
freezing [10,12]. The higher results generated in the current study compared to others,
might be explained by the improved pre-freeze sperm quality and larger number of samples
available in this study. Research into sperm membrane lipid composition and its choles-
terol/phospholipid ratio in relation to the presence of glycerol and methylformamide might
also further explain the exceedingly high cryoresistance of giraffe spermatozoa [28,29].

The combination of glycerol and methylformamide as a cryoprotectant cocktail has
been investigated in canine [19], stallion [20], and rhinoceros [15] cryopreservation pro-
tocols. This protocol has been gaining momentum as a suitable cryoprotectant given it
is less toxic than traditional glycerol. It could therefore be argued that perhaps giraffe
species have an increased sensitivity to glycerol, and given the current cryopreservation
methods have extended incubation periods in glycerol, this may aggravate any toxic effects.
Glycerol cell toxicity is partly due to the high molecular weight and viscosity, resulting in
a slow cell membrane penetration and thus undesirable osmotic effects and cell dehydra-
tion [30]. In contrast to glycerol, methylformamide has been reported to cause less osmotic
damage to sperm because of its lower molecular weight and viscosity [15]; this allows it
to permeate the plasma membrane more readily, providing a greater source of protection
to the cell during freezing. Reducing the concentration of glycerol from 5% to 1% (as per
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conventional freezing recipes) not only reduces the toxicity of glycerol but also increases
the concentration of more permeable cryoprotectants. However, these results differ from
other previous studies on stallions and rhinoceroses, which showed improved post-thaw
sperm motility in media containing just glycerol [15–20,28,29,31], perhaps suggesting a
more species-specific role for methylformamide. In general, the mix of glycerol and methyl-
formamide as used here in giraffes and previously in rhinoceroses [15] might prove a more
suitable cryoprotectant of choice for the cryopreservation of sperm from wildlife species in
which knowledge on cryoresistance of their sperm is poor or even unknown. In relation to
the base extenders used, it is difficult to directly compare the difference between the TEY
and commercial Steridyl extenders given the specific percentages of egg yolk and other
ingredients in Steridyl are unknown. Indeed, the extenders are likely quite similar in their
composition. This suggests that the success of giraffe sperm cryopreservation might be
more related to the choice of cryoprotectant and its concentration, rather than the base
extender ingredients themselves.

Biobanking of cryopreserved sperm, oocytes, tissue, or cell lines to safeguard the ge-
netic diversity of endangered (sub)species evolves as a new, genuine strategy in endangered
wildlife conservation [13]. In this context, improved sperm cryopreservation is immensely
important for the development of ART in giraffes and the maintenance of giraffe genetics.
These investigations are key for the development of protocols necessary to establish genetic,
gamete, or even embryo biobanks of threatened giraffe subspecies. High-quality cryopre-
served sperm might be used for AI in captive giraffes or for in vitro embryo production and
embryo transfer in small populations of giraffe subspecies. The first reports on AI using
frozen–thawed sperm [7], xeno-ICSI of giraffe sperm into mouse oocytes [10], or embryo
retrieval in early pregnant giraffes [7,31] have set the start towards the development of
ART in giraffes and building biobanks maintaining gametes and embryos as a ‘backup
population’ of endangered or genetically distinct giraffe subspecies.

5. Conclusions

Using the conventional method of giraffe sperm cryopreservation, with a combination
of glycerol and methylformamide, this study represents the first study to report a post-
thaw motility of 57%. Sperm viability, and in particular acrosome integrity, also remained
high. Along with the corresponding cryoresistance ratios, these results agree with previous
studies which have claimed that giraffe spermatozoa are actually very resilient to the
freezing process. With this in mind, perhaps the challenge is actually ensuring motility
prior to freezing is acceptable, dependent on the method of semen collection, be that
via epididymal harvest post-cull or castration, or ejaculated sperm recovery. Regardless,
these results offer a new alternative to freezing with toxic glycerol and could see an
improvement in the post-thaw motility of giraffe spermatozoa. Acting as a model for
pure-bred giraffe subspecies, the use of captive-bred hybrid individuals is key to further
optimizing and improving protocols for long-term genetic preservation and possibly the
survival of endangered giraffe subspecies in the future.
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